Informace o publikaci

Galois connections and tense operators on q-effect algebras

Logo poskytovatele
Autoři

CHAJDA Ivan PASEKA Jan

Rok publikování 2016
Druh Článek v odborném periodiku
Časopis / Zdroj Fuzzy Sets and Systems
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Doi http://dx.doi.org/10.1016/j.fss.2015.05.010
Obor Obecná matematika
Klíčová slova Effect algebra; q-Effect algebra; Galois q-connection; q-Tense operators; q-Jauch-Piron q-effect algebra; q-Representable q-effect algebra
Přiložené soubory
Popis For effect algebras, the so-called tense operators were already introduced by Chajda and Paseka. They presented also a canonical construction of them using the notion of a time frame. Tense operators express the quantifiers "it is always going to be the case that" and "it has always been the case that" and hence enable us to express the dimension of time both in the logic of quantum mechanics and in the many-valued logic. A crucial problem concerning tense operators is their representation. Having an effect algebra with tense operators, we can ask if there exists a time frame such that each of these operators can be obtained by the canonical construction. To approximate physical real systems as best as possible, we introduce the notion of a q-effect algebra and we solve this problem for q-tense operators on q-representable q-Jauch-Piron q-effect algebras. (c) 2015 Elsevier B.V. All rights reserved.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info