Zde se nacházíte:
Informace o publikaci
Law of inertia for the factorization of cubic polynomials - the real case
Autoři | |
---|---|
Rok publikování | 2017 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Utilitas Mathematica |
Fakulta / Pracoviště MU | |
Citace | |
Obor | Obecná matematika |
Klíčová slova | cubic polynomial; type of factorization; discriminant |
Popis | Let D be an integer and let C_D be the set of all monic cubic polynomials x^3 + ax^2 + bx + c with integral coefficients and with the discriminant equal to D. Assume that D<0, D is square-free and 3 does not divide the class number of Q((-3D)^(1/2)). We prove that all polynomials in C_D have the same type of factorization over any Galois field F_p, where p is a prime, p > 3. |
Související projekty: |