Informace o publikaci

Modified conformal extensions

Logo poskytovatele
Autoři

HAMMERL Matthias SAGERSCHNIG Katja ŠILHAN Josef ŽÁDNÍK Vojtěch

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Annals of Global Analysis and Geometry
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://link.springer.com/article/10.1007/s10455-023-09918-9
Doi http://dx.doi.org/10.1007/s10455-023-09918-9
Klíčová slova Differential geometry; Patterson-Walker metric; Projective structure; Conformal structure; Conformal Killing field; Einstein metric; Fefferman-Graham ambient metrics
Popis We present a geometric construction and characterization of 2n-dimensional split-signature conformal structures endowed with a twistor spinor with integrable kernel. The construction is regarded as a modification of the conformal Patterson-Walker metric construction for n-dimensional projective manifolds. The characterization is presented in terms of the twistor spinor and an integrability condition on the conformal Weyl curvature. We further derive a complete description of Einstein metrics and infinitesimal conformal symmetries in terms of suitable projective data. Finally, we obtain an explicit geometrically constructed Fefferman-Graham ambient metric and show the vanishing of the Q-curvature.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info