Informace o publikaci

MUNI-NLP Systems for Low-resource Indic Machine Translation

Autoři

SIGNORONI Edoardo RYCHLÝ Pavel

Rok publikování 2023
Druh Článek ve sborníku
Konference Proceedings of the Eighth Conference on Machine Translation
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://aclanthology.org/2023.wmt-1.91.pdf
Doi http://dx.doi.org/10.18653/v1/2023.wmt-1.91
Klíčová slova low-resource;machine translation;NLP
Přiložené soubory
Popis The WMT 2023 Shared Task on Low-Resource Indic Language Translation featured to and from Assamese, Khasi, Manipuri, Mizo on one side and English on the other. We submitted systems supervised neural machine translation systems for each pair and direction and experimented with different configurations and settings for both preprocessing and training. Even if most of them did not reach competitive performance, our experiments uncovered some interesting points for further investigation, namely the relation between dataset and model size, and the impact of the training framework. Moreover, the results of some of our preliminary experiments on the use of word embeddings initialization, backtranslation, and model depth were in contrast with previous work. The final results also show some disagreement in the automated metrics employed in the evaluation.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info