Informace o publikaci

Coupled intervals in the discrete calculus of variations: necessity and sufficiency

Logo poskytovatele
Autoři

HILSCHER Roman ZEIDAN Vera

Rok publikování 2002
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Mathematical Analysis and Applications
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Obor Obecná matematika
Klíčová slova discrete quadratic functional; coupled interval; Jacobi difference equation; conjugate interval; Legendre condition; discrete calculus of variations
Popis In this work we study nonnegativity and positivity of a discrete quadratic functional with separately varying endpoints. We introduce a notion of an interval coupled with 0, and hence, extend the notion of conjugate interval to 0 from the case of fixed to variable endpoint(s). We show that the nonnegativity of the discrete quadratic functional is equivalent to each of the following conditions: the nonexistence of intervals coupled with 0, the existence of a solution to Riccati matrix equation and its boundary conditions. Natural strengthening of each of these conditions yields a characterization of the positivity of the discrete quadratic functional. Since the quadratic functional under consideration could be a second variation of a discrete calculus of variations problem with varying endpoints, we apply our results to obtain necessary and sufficient optimality conditions for such problems. This paper generalizes our recent work in [18], where the right endpoint is fixed.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info