You are here:
Publication details
Arrangement of chromosome 11 and 22 territories, EWSR1 and FLI-1 genes, and other genetic elements of these chromosomes in human lymphocytes and Ewing sarcoma cells
Authors | |
---|---|
Year of publication | 2003 |
Type | Article in Periodical |
Magazine / Source | Human Genetics |
MU Faculty or unit | |
Citation | |
Field | Oncology and hematology |
Keywords | human genome structure; interphase cell nuclei |
Description | Standard and repeated fluorescence in situ hybridization and high-resolution cytometry were used to study topographical parameters of chromosome 11 and 22 territories, EWSR1 and FLI1 genes, and other genetic elements of these chromosomes in human lymphocytes and Ewing sarcoma cells. HSA 11 and its elements (BCL1, FLI1, centromere) were found, on average, more peripherally in comparison with HSA 22 and investigated elements (BCR, EWSR1, centromere). After the elimination of fluctuations of chromosome territories in nuclear volume, it was found that genetic elements in most cases adhered to their territories. The investigated genetic elements of HSA 11 were found close to each other relative to the large molecular lengths among them. This finding indicates a higher degree of chromatin condensation of at least a part of HSA 11 compared with HSA 22. In general, there is no correlation between the physical and molecular distance of two loci of the same chromosome territory. The topographical parameters of the EWSR1 and FLI1 genes do not differ substantially for G0-lymphocytes, stimulated lymphocytes and Ewing sarcoma cells. The fusion genes pertaining to both derivative chromosomes 11 and 22 in Ewing sarcoma cell nuclei are shifted to the midway position between the native EWSR1 and FLI1 genes. Comparing results obtained for the EWSR1/FLI1 and ABL1/BCR genes in samples of patients suffering from Ewing sarcoma or chronic myelogenous leukaemia, it can be concluded that the mean positions of the fusion genes are determined by the final structure of the chimeric chromosomes and do not depend on the location of the translocation event. |
Related projects: |
|